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a b s t r a c t

In this paper we develop numerical fluxes of the centred type for one-step schemes in con-
servative form for solving general systems of conservation laws in multiple-space dimen-
sions on structured meshes. The proposed method is an extension of the multidimensional
FORCE flux developed by Toro et al. (2009) [14]. Here we introduce upwind bias by mod-
ifying the shape of the staggered mesh of the original FORCE method. The upwind bias is
evaluated using an estimate of the largest eigenvalue, which in any case is needed for
selecting a time step. The resulting basic flux is first-order accurate and monotone. For
the linear advection equation, the proposed UFORCE method reproduces exactly the
upwind Godunov method. Extension to non-linear systems has been done empirically
via the two-dimensional inviscid shallow water equations. Second order of accuracy in
space and time on structured meshes is obtained in the framework of finite volume meth-
ods. The proposed method improves the accuracy of the solution for small Courant num-
bers and intermediate waves associated with linearly degenerate fields (contact
discontinuities, shear waves and material interfaces). It achieves comparable accuracy to
that of upwind methods with approximate Riemann solvers, though retaining the simplic-
ity and efficiency of centred methods. The performance of the schemes is assessed on a
suite of test problems for the two-dimensional shallow water equations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

There are essentially two approaches for designing non-oscillatory numerical fluxes for computing approximate solutions
to systems of hyperbolic equations. The first approach is the upwind approach, represented by Godunov’s method [3] while
the second is the centred approach, typically represented by the Lax–Friedrichs flux and variations of it [10]. The upwind ap-
proach is more accurate than the centred approach, if used with suitable Riemann solvers, the disadvantage being its com-
plexity and computational expense. The centred approach is more general and simpler to apply to complicated set of
equations. The difference in accuracy between the upwind and the centred approach is evident in two special cases, namely,
for calculations with small Courant numbers and for computing intermediate waves associated with linearly degenerate
fields (contact discontinuities, shear waves, material interfaces and vortical flows). For a comprehensive presentation of up-
wind, and also some centred methods, see for example [13] and references therein.

This paper is about a centred scheme with upwind bias. The scheme partially uses upwind information, while retaining
the simplicity and efficiency of a centred scheme. Kurganov and Tadmor put forward an analogous idea in their central-up-
wind approach [9], using an adaptive staggered mesh. Their scheme is based on a modification of the centred scheme of
Nessyahu and Tadmor [11], where the staggered mesh is fixed. The scheme of Nessyahu and Tadmor [11] has been extended
. All rights reserved.
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to multi-dimensions by Jiang and Tadmor [4] and by Arminjon and his collaborator [1]. Multidimensional extensions of the
scheme of Kurganov and Tadmor have been presented by [6] (Cartesian version) and [8] (unstructured version), while a mod-
ified version of the scheme optimised for treating contact discontinuities, which makes use of the partial characteristic
decomposition, has been presented by Kurganov and Petrova [7].

Our scheme is a modification of the FORCE centred method, first put forward for one-dimensional systems in [17]. See
also [2], where convergence of the scheme is established for two pairs of hyperbolic systems. A multidimensional version
of FORCE for unstructured meshes in two and three space dimensions has recently been proposed in [14]. Their approach
is of the predictor–corrector type and has conservative form, with a numerical flux defined on a secondary mesh. This sec-
ondary mesh is edge based and is typically defined by joining the barycentre to the vertices of the primary mesh, in which
conservative variables are defined.

The present scheme puts forward the idea of replacing the barycentres of each cell in the primary mesh by a moving point,
whose position is determined so as to reduce numerical dissipation. For the linear advection equation in two and three space
dimensions the approach reproduces identically the Godunov scheme constructed by solving Riemann problems normal to
each interface. In fact, as proved here, this is the most accurate monotone scheme that can be constructed in the given stencil.
For non-linear systems the extension is empirical and makes explicit use of estimates for the eigenvalues of the relevant system.

The method is fully analysed for the linear advection equation in multiple-space dimensions. Then the method is imple-
mented for solving the two-dimensional non-linear shallow water equations on Cartesian meshes, in first-order mode and in
second-order mode using a simple MUSCL-Hancock type extension. The schemes are thoroughly assessed on a number of
well-established test problems for the non-linear shallow water equations, some of them with exact solutions. Significant
improvements in accuracy are observed with respect to the conventional FORCE scheme without upwind information. As
already mentioned, there are two critical situations in which classical centred schemes are inaccurate: small Courant num-
bers and intermediate waves. Our numerical experiments show very significant improvements in both classes of problems.
The present approach offers a practical tool for solving problems associated with real applications in geophysical flows.

The rest of this paper proceeds as follows. In Section 2 we set the background by reviewing the FORCE method in multi-
ple-space dimensions. In Section 3 we present our UFORCE first-order accurate numerical method on structured meshes. The
optimal choice for the upwind bias is discussed in Section 3.2 for the linear case and in Section 3.3 for non-linear systems. In
Section 4 we extend the UFORCE approach and construct numerical fluxes to second order using the MUSCL-Hancock ap-
proach. In Section 5 we assess the performance of the numerical scheme for shocked and smoothed flows via a suite of test
problems for the shallow water equations. Conclusions are drawn in Section 6.
2. Background

In this section we review the multidimensional FORCE flux on Cartesian meshes in the framework of finite volume
methods.

We consider a two-dimensional system of m non-linear hyperbolic equations written in differential conservation-law
form:
@tQ þ @xFðQ Þ þ @yGðQ Þ ¼ 0; ð1Þ
where Q is the vector of conserved variables, F(Q), and G(Q) are the flux vectors in the x and y directions respectively.
Finite volume schemes for (1) have the form:
Q nþ1
i;j ¼ Q n

i;j �
Dt
Dx

Fiþ1
2;j
� Fi�1

2;j

h i
� Dt

Dy
Gi;jþ1

2
� Gi;j�1

2

h i
: ð2Þ
The construction of the FORCE flux in multi-dimensions has been proposed by Toro et al. [14]. It requires the adoption of two
different meshes: the primary mesh, where the numerical scheme provides cell averages, and a staggered mesh, used to define
numerical fluxes for the conservative form of the scheme.

The primary mesh is the mesh chosen for the discretization of the domain of interest, while the staggered mesh is obtained
using edge-based meshes. Fig. 1 depicts the situation for the two-dimensional case. The chosen Cartesian mesh determines
the computing cells denoted by Ci,j. Each cell Ci,j possesses four edges (or faces or inter-cell boundaries). We adopt the con-
ventional anticlockwise orientation so that the cell Ci,j lies on the left of edge k while the neighbouring cell that shares edge k
with cell Ci,j lies on the right of edge k. Each edge k is associated to one element of the staggered mesh, which is generated by
joining the barycentre of Ci,j and the barycentre of its neighbour across edge k, with the vertices of edge k. This results in a
quadrilateral straddling face k, as depicted in Fig. 1. The four edge-based secondary control volumes and the corresponding
edges of cell Ci,j are defined as follows:
Siþ1
2;j
¼ S�iþ1

2;j

S
Sþiþ1

2;j
;

Si;jþ1
2
¼ S�i;jþ1

2

S
Sþi;jþ1

2
;

Si�1
2;j
¼ S�i�1

2;j

S
Sþi�1

2;j
;

Si;j�1
2
¼ S�i;j�1

2

S
Sþi;j�1

2
:

9>>>>>>=
>>>>>>;

ð3Þ



Fig. 1. Notation for a general configuration on a Cartesian mesh for the FORCE scheme.
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In (3), S�i�1
2;j
; S�i;j�1

2
denote the portion of the corresponding control volumes of the staggered mesh Si�1

2;j
; Si;j�1

2
that lay inside Ci,j

and Sþi�1
2;j
; Sþi;j�1

2
denote the portion of the corresponding control volumes that lay outside (see Fig. 1).

In order to derive the FORCE scheme, we recall the integral form of the conservation laws (1), applied for a time interval dt
for a generic control volume Sk, assumed to be a polygon of nk edges:
Q 1
k ¼ Q 0

k �
dt
jSkj

Xnk

l¼1

Z v lþ1

v l

½cosðhlÞFðQ Þ þ sinðhlÞGðQ Þ�ds: ð4Þ
Here Q 0
k is the initial condition at time t ¼ 0; Q 1

k is the integral average at time t = dt, hl is the angle between the x-axis
and the normal vector to face l joining vertices vl and vl+1, with vnkþ1 � v1; jSkj is the area of control volume Sk, nk = (cos(hl),
sin(hl)) is the outward unit normal vector to edge l of Sk.

Keeping in mind (4), the construction of the FORCE scheme is achieved in three stages:

(i) Averages on staggered mesh.
In the first stage we assume initial condition Q n

i;j for the conservation laws at time tn in cells Ci,j. Note that initial con-
ditions in cell Ci,j and all its immediate neighbours determine initial conditions for each of the control volumes (3) of
the staggered mesh associated with the boundaries of Ci,j. Then we evolve the solution for a time interval 1

2 Dt in each
control volume in (3). The solution is obtained by applying the integral form of the conservation laws (4) with
dt ¼ 1

2 Dt. Application of (4) to each of the secondary control volumes in (3) yields:
Q nþ1
2

iþ1
2;j
¼ 1

2 Q n
i;j þ Q n

iþ1;j

� �
� Dt

Dx FðQ n
iþ1;jÞ � FðQ n

i;jÞ
h i

;

Q nþ1
2

i;jþ1
2
¼ 1

2 Q n
i;j þ Q n

i;jþ1

� �
� Dt

Dy GðQ n
i;jþ1Þ � GðQ n

i;jÞ
h i

;

Q nþ1
2

i�1
2;j
¼ 1

2 Q n
i�1;j þ Q n

i;j

� �
� Dt

Dx FðQ n
i;jÞ � FðQ n

i�1;jÞ
h i

;

Q nþ1
2

i;j�1
2
¼ 1

2 Q n
i;j�1 þ Q n

i;j

� �
� Dt

Dy GðQ n
i;jÞ � GðQ n

i;j�1Þ
h i

:

9>>>>>>>>>>=
>>>>>>>>>>;

ð5Þ
(ii) Averages on primary mesh.
In the second stage of the construction of the schemes, we evolve the solution by another time step 1

2 Dt within each
cell Ci,j, having assumed (5) at time t ¼ tn þ 1

2 Dt as initial condition. By applying again the integral form of the conser-
vation laws (4), we obtain:
Q nþ1
i;j ¼

1
4

Q nþ1
2

iþ1
2;j
þ Q nþ1

2
i;jþ1

2
þ Q nþ1

2
i�1

2;j
þ Q nþ1

2
i;j�1

2

h i
� 1

2
Dt
Dx

FðQ nþ1
2

iþ1
2;j
Þ � F Q nþ1

2
i�1

2;j

� �h i
� 1

2
Dt
Dy

GðQ nþ1
2

i;jþ1
2
Þ � G Q nþ1

2
i;j�1

2

� �h i
: ð6Þ
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(iii) Conservative form and the FORCE flux.
In the final stage of the derivation of the scheme we perform algebraic manipulations on (6) so as to reproduce the
conservative formula (2). The resulting FORCE numerical flux is:
Fiþ1
2;j
¼ 1

2
F Q nþ1

2
iþ1

2;j

� �
þ 1

2
FðQ n

i;jÞ þ FðQ n
iþ1;jÞ

� �
� 1

4
Dx
Dt

Q n
iþ1;j � Q n

i;j

� �� �
; ð7Þ
with analogous formulae for the other fluxes. It is possible to rewrite the inter-cell flux (7) as the arithmetic average of two
fluxes, namely
Fiþ1
2;j
¼ 1

2
FLW2

iþ1
2;j
þ FLF2

iþ1
2;j

� �
: ð8Þ
Here
FLW2
iþ1

2;j
¼ FðQ LW2

iþ1
2;j
Þ ð9Þ
with
Q LW2
iþ1

2;j
¼ 1

2
ðQ n

i;j þ Q n
iþ1;jÞ �

1
2

2Dt
Dx

� �
½FðQ n

iþ1;jÞ � FðQ n
i;jÞ�: ð10Þ
The second flux term in (8) is
FLF2
iþ1

2;j
¼ 1

2
½FðQ n

iþ1;jÞ þ FðQ n
i;jÞ� �

1
2

Dx
2Dt

� �
ðQ n

iþ1;j � Q n
i;jÞ: ð11Þ
Fluxes (9) and (11) may be regarded as generalisations of the Lax–Wendroff (LW) and Lax–Friedrichs (LF) flux,
respectively.

Generalising the FORCE method in a dimensions [14], where a denotes the number of spatial dimensions, we can write:
FFORCEa
iþ1

2
¼ 1

2
ðFLWa

iþ1
2
þ FLFa

iþ1
2
Þ; ð12Þ
with
FLWa
iþ1

2
¼ F Q LWa

iþ1
2

� �
ð13Þ
and
Q LWa
iþ1

2
¼ 1

2
ðQ n

i þ Q n
iþ1Þ �

1
2

aDt
Dx

� �
½FðQ n

iþ1Þ � FðQ n
i Þ�: ð14Þ
The Lax–Friedrichs type flux is
FLFa
iþ1

2
¼ 1

2
½FðQ n

iþ1Þ þ FðQ n
i Þ� �

1
2

Dx
aDt

� �
ðQ n

iþ1 � Q n
i Þ: ð15Þ
A linear analysis shows that the FORCE scheme is monotone under the following conditions (see [14]):
c2
x þ c2

y 6
1
2

in two space dimensions a ¼ 2;

c2
x þ c2

y þ c2
z 6

1
3

in three space dimensions a ¼ 3;
ð16Þ
where
cx ¼ kx
Dt
Dx

; cy ¼ ky
Dt
Dy

; cz ¼ kz
Dt
Dz

ð17Þ
represent the Courant numbers in x, y and z directions and kx, ky, kz are the corresponding characteristic speeds.
3. Upwind-biased FORCE scheme in multiple-space dimensions

In this section we construct an upwind-biased variation of the FORCE method in multi-dimensions for a system of hyper-
bolic equations. This is achieved by modifying the shape of the staggered mesh in the FORCE scheme [14], accordingly to
upwind information, which only requires the knowledge of the eigenvalues of the system.



Fig. 2. Notation for a general configuration on an Cartesian mesh.

Fig. 3. Notation for a general configuration on an Cartesian mesh for the UFORCE scheme.
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3.1. Derivation of the numerical method

We first consider the two-dimensional case (2). As for the classical FORCE scheme [14], the upwind-biased version of
the FORCE scheme (UFORCE) requires the adoption of a primary mesh for computing cell averages, and a staggered mesh
used to define numerical fluxes for the conservative form of the scheme. The primary mesh, which determines the com-
puting cells Ci,j, is Cartesian in this paper, while the staggered mesh is obtained joining the four vertices
(Vi�1

2;j�
1
2
; Viþ1

2;j�
1
2
; Viþ1

2;jþ
1
2
; Vi�1

2;jþ
1
2
) of cell Ci,j with a generic point Pi,j lying inside the cell as shown in Fig. 2. This results in

a non-Cartesian convex quadrilateral straddling face k, as depicted in Fig. 3. In order to construct the control volumes
of the staggered grid, for each cell Ci,j we consider its barycentre Gi,j having local coordinates Gi,j � (0,0). The bias is mea-
sured as the distance between Pi,j � (�(bx)i,jDx, �(by)i,jDy) and Gi,j, where the directional bias (bx)i,j and (by)i,j along the x and
y directions, are taken positive in the i � 1 and j � 1 directions. The situation is described in Fig. 2, where positive values for
the bias are depicted. The range of variation for the upwind bias is � 1

2 6 ðbxÞi;j; ðbyÞi;j 6 1
2, where the case ((bx)i,j, (by)i,j) � 0

reproduces the standard FORCE scheme.
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By defining a triangle of vertices P1, P2, P3 as T fP1; P2; P3g, we can identify the triangles of the secondary mesh as:
S�i�1
2;j
¼ T Vi�1

2;j�
1
2
;Vi�1

2;jþ
1
2
; Pi;j

� �
;

Sþiþ1
2;j
¼ T Viþ1

2;j�
1
2
;Viþ1

2;jþ
1
2
; Piþ1;j

� �
;

Sþi�1
2;j
¼ T Vi�1

2;jþ
1
2
;Vi�1

2;j�
1
2
; Pi�1;j

� �

9>>>>=
>>>>;

ð18Þ
while analogous expressions are obtained for S�i;j�1
2
; Sþi;j�1

2
and Sþi;jþ1

2
(see Fig. 3).

Then, the areas associated with the secondary mesh are given by:
jS�iþ1
2;j
j ¼ DyDx

2
1
2þ ðbxÞi;j
h in o

þ jSþiþ1
2;j
j ¼ DyDx

2
1
2� ðbxÞiþ1;j

h in o
;

jS�i�1
2;j
j ¼ DyDx

2
1
2� ðbxÞi;j
h in o

þ jSþi�1
2;j
j ¼ DyDx

2
1
2þ ðbxÞi�1;j

h in o
:

9>=
>; ð19Þ
Analogous expressions can be written for jS�i;jþ1
2
j; jSþi;jþ1

2
j; jS�i;j�1

2
j; jSþi;j�1

2
j. Then, the UFORCE scheme is achieved in three stages:

(i) Averages on staggered mesh. Assuming initial condition Q n
i;j in cells Ci,j at time tn, cell averages are evolved for a time

step 1
2 Dt in each control volume in (19) of the staggered mesh associated with the edge of Ci,j. The solution is obtained

by applying the integral form of the conservation laws (4) with dt ¼ 1
2 Dt. Application of (4) to each of the secondary

control volumes in (19) yields the following expression for intermediate states:
Q nþ1
2

iþ1
2;j
¼ 1

S�
iþ1

2;j

����
����þ Sþ

iþ1
2;j

����
����

S�iþ1
2;j

��� ���Q n
i;j þ Sþiþ1

2;j

��� ���Q n
iþ1;j �

DtDy
2 FðQ n

iþ1;jÞ � FðQ n
i;jÞ

h in o

Q nþ1
2

i�1
2;j
¼ 1

S�
i�1

2;j

����
����þ Sþ

i�1
2;j

����
����

Sþi�1
2;j

��� ���Q n
i�1;j þ S�i�1

2;j

��� ���Q n
i;j �

DtDy
2 FðQ n

i;jÞ � FðQ n
i�1;jÞ

h in o

9>>>>>>=
>>>>>>;

ð20Þ

while the expressions for Q nþ1
2

i;jþ1
2
;Q nþ1

2

i;j�1
2

are obtained from (20) by exchanging indexes i and j and replacing F with G.
(ii) Averages on primary mesh. In the second stage of the construction of the scheme, we evolve the solution by another

time step 1
2 Dt within each cell Ci,j, having assumed (20) at time t ¼ tn þ 1

2 Dt as initial condition. By applying again the
integral form of the conservation laws (4), we obtain:

Q nþ1
i;j ¼

1
DxDy

Q nþ1
2

iþ1
2;j

S�iþ1
2;j

��� ���þ Q nþ1
2

i;jþ1
2

S�i;jþ1
2

��� ���þQ nþ1
2

i�1
2;j

S�i�1
2;j

��� ���þ Q nþ1
2

i;j�1
2

S�i;j�1
2

��� ���h i
� 1

2
Dt
Dx

FðQ nþ1
2

iþ1
2;j
Þ � FðQ nþ1

2
i�1

2;j
Þ

h i

� 1
2

Dt
Dy

G Q nþ1
2

i;jþ1
2

� �
� G Q nþ1

2
i;j�1

2

� �h i
: ð21Þ

(iii) Conservative form and the upwind-biased FORCE flux. In this stage we perform algebraic manipulations on (21) so as
to reproduce the conservative formula (2). As for the standard FORCE method the intercell flux can be rewritten as the
arithmetic average of two fluxes, namely
FUFORCE2
iþ1

2;j
¼ 1

2
FuLW2

iþ1
2;j
þ FuLF2

iþ1
2;j

� �
: ð22Þ

Here FuLW2
iþ1

2;j
and FuLF2

iþ1
2;j

represent upwind-biased versions of the Lax-Wendroff (9), (10) and Lax–Friedrichs (11) fluxes,
which read:

FuLW2
iþ1

2;j
¼ F Q uLW2

iþ1
2;j

� �
; ð23Þ

Q uLW2
iþ1

2;j
¼ 1

Sþiþ1
2;j

��� ���þ S�iþ1
2;j

��� ��� S�iþ1
2;j

��� ���Q n
i;j þ Sþiþ1

2;j

��� ���Q n
iþ1;j

h i
� 1

2
DtDy F Q n

iþ1;j

� �
� F Q n

i;j

� �h i	 

; ð24Þ

FuLF2
iþ1

2;j
¼ 1

Sþiþ1
2;j

��� ���þ S�iþ1
2;j

��� ��� S�iþ1
2;j

��� ���FðQ n
iþ1;jÞ þ Sþiþ1

2;j

��� ���FðQ n
i;jÞ

h i
� 2

1
DtDy

� �
S�iþ1

2;j

��� ��� Sþiþ1
2;j

��� ��� Q n
iþ1;j � Q n

i;j

� �	 

: ð25Þ
Finally, the generalisation of the flux in the x direction of the UFORCE method on a arbitrary number a of dimensions can be
written as function of the upwind bias in the following way:
FUFORCEa
iþ1

2
¼ 1

2
ðFuLWa

iþ1
2
þ FuLFa

iþ1
2
Þ: ð26Þ
Here
FuLWa
iþ1

2
¼ F Q uLWa

iþ1
2

� �
ð27Þ
with
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Q uLWa
iþ1

2
¼ 1

2 1� ðbxÞiþ1 þ ðbxÞi
� � 1þ 2ðbxÞi


 �
Q n

i þ ð1� 2ðbxÞiþ1ÞQ
n
iþ1Þ �

aDt
Dx

� �
½FðQ n

iþ1Þ � FðQ n
i Þ�

	 

: ð28Þ
The second flux term in (26) is
FuLFa
iþ1

2
¼ 1

2 1� ðbxÞiþ1 þ ðbxÞi
� � ð1þ 2ðbxÞiÞFðQ

n
iþ1Þ þ ð1� 2ðbxÞiþ1ÞFðQ

n
i Þ �

Dx
aDt

� �
ð1þ 2ðbxÞiÞð1� 2ðbxÞiþ1ÞðQ

n
iþ1;j � Q n

i;jÞ
	 


:

ð29Þ
In (26)–(29) we make an exception to the two-dimensional Cartesian notation used in the rest of this paper. Here x indicates
the current direction and the subscript i is the index along the x direction.

The method derived in this section depends directly on the upwind bias inside the computational cell.
Even though the derivation of the UFORCE method is rather complex, its implementation is quite simple. In fact, in two-

space dimension it requires to update the solution at time level n + 1 using formula (2) with fluxes F given by (22) and fluxes
G obtained in analogous manner.

In the next section we shall derive optimal values for the upwind bias.

3.2. Optimal choice for the upwind bias: the linear case

In this section we analyse how to determine the optimal bias for the UFORCE scheme taking into account information
from the eigenvalues of the system.

The study is based on the two-dimensional linear advection equation with constant coefficients, in two space dimensions:
@tqþ @xf ðqÞ þ @ygðqÞ ¼ 0; ð30Þ
where f(q) = kxq and g(q) = kyq are fluxes and kx and ky are the characteristic speeds in the x and y direction, respectively.

3.2.1. Accuracy of the two-dimensional Godunov upwind method
Numerical schemes for (30) are written as:
qnþ1
i;j ¼ qn

i;j �
Dt
Dx

fiþ1
2;j
� fi�1

2;j

� �
� Dt

Dy
gi;jþ1

2
� gi;j�1

2

� �
: ð31Þ
We restrict our analysis to five-point schemes, in which the stencil consists of the central point (i, j) and the 4 neighbours
(i, j � 1), (i + 1, j), (i, j + 1), (i � 1, j). This implies that the scheme (31) can be rewritten as:
qnþ1
i;j ¼

X1

l¼�1

X1

m¼�1

bl;mqn
iþl;jþm ðb�1;�1 ¼ 0Þ: ð32Þ
To this class belong all the numerical methods discussed in this paper.
Consider the Godunov upwind method, whose flux in the one-dimensional case is given by:
FGod
iþ1

2
¼ F Q iþ1

2
ð0Þ

� �
; ð33Þ
where Q iþ1
2
ð0Þ is the solution of the following Riemann problem:
PDEs :@tQ þ @xFðQ Þ ¼ 0;

IC : Q ðx;0Þ ¼
Q n

i if x < 0;
Q n

iþ1 if x > 0;

( 9>=
>; ð34Þ
Here we consider a two-dimensional extension of the Godunov method in which fluxes are calculated by solving one-dimen-
sional Riemann problems (34) orthogonally to the current edge.

Remark. The coefficients in (32) of the Godunov upwind method in two space dimensions read:
b�1;0 ¼
1
2
ðcx þ jcxjÞ; b1;0 ¼

1
2
ðjcxj � cxÞ; b0;�1 ¼

1
2
ðcy þ jcyjÞ; b0;1 ¼

1
2
ðjcyj � cyÞ; b0;0 ¼ 1� jcxj � jcyj; ð35Þ
where cx ¼ kx
Dt
Dx and cy ¼ ky

Dt
Dy are the directional CFL numbers. The numerical scheme (32), (35) proves to be stable if the

following condition holds:
jcxj þ jcyj 6 1: ð36Þ
Proposition 1. The Godunov upwind scheme in two space dimensions for the linear advection equation is the monotone scheme
with the smallest truncation error among all the five-point schemes (32).
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Proof. We consider the generic five-points scheme (32). Coefficients bl,m, � 1 6 l, m 6 1 are constant. Assume the scheme to
be at least first-order, that is consistent. Then from Roe’s accuracy lemma (see [13]) we have the following three equations
relating the five coefficients:
P1
l¼�1

P1
m¼�1

bl;m ¼ 1 ðb�1;�1 ¼ 0Þ;

b�1;0 � b1;0 ¼ cx;

b0;�1 � b0;1 ¼ cy:

8>>><
>>>:

ð37Þ
System (37) gives a two-parameter family of solutions. We set:
b�1;0 þ b1;0 ¼ q̂x;

b0;�1 þ b0;1 ¼ q̂y
ð38Þ
and solve the complete system in terms of the arbitrary parameters q̂x and q̂y:
b�1;0 ¼
1
2
ðq̂x þ cxÞ b0;�1 ¼

1
2
ðq̂y þ cyÞ; b1;0 ¼

1
2
ðq̂x � cxÞ b0;1 ¼

1
2
ðq̂y � cyÞ; b0;0 ¼ 1� ðq̂x þ q̂yÞ: ð39Þ
By performing a truncation error analysis, both cross contributions to numerical viscosity (proportional to @x@yq) and normal
contributions (proportional to @2

x q; @2
yq) are found. The cross coefficient of viscosity in the x, y direction:
lx;y ¼ �
DxDy
Dt

cxcy ð40Þ
does not depend on q̂x and q̂y. The normal coefficients of viscosity in the x and y direction read:
lx;x ¼
Dx2

2Dt
q̂x � c2

x


 �
;

ly;y ¼
Dy2

2Dt
q̂y � c2

y

� �
:

ð41Þ
In order to minimise the truncation error, the normal contributions (41) must be minimised.
Monotonicity requires positivity (non-negativity) of all coefficients (39). This leads to the conditions:
jcxj 6 q̂x 6 1� q̂y;

jcyj 6 q̂y 6 1� q̂x:

(
ð42Þ
From (42), being jcxjP 0 and jcyjP 0, a wider set of inequalities can be written as:
0 6 jcxj 6 q̂x 6 1� q̂y 6 1;
0 6 jcyj 6 q̂y 6 1� q̂x 6 1

(
ð43Þ
from which the widest range of variation for jcxj,jcyj and q̂x; q̂y can be found:
0 6 jcxj 6 1;
0 6 jcyj 6 1;

	
ð44Þ

jcxj 6 q̂x 6 1;
jcyj 6 q̂y 6 1:

(
ð45Þ
For any given value of jcxj, jcyj in the range of (44), taking into account (45), and noting that lx,x and ly,y in (41) are linearly
increasing functions of q̂x; q̂y, we can write:
min
jcx j6q̂x61

ðlx;xÞ ¼ lx;x min
jcx j6q̂x61

q̂xð Þ
� �

¼ lx;x q̂x ¼ cxj jð Þ;

min
jcy j6q̂y61

ðly;yÞ ¼ ly;y min
jcy j6q̂y61

q̂y

 �� �

¼ ly;y q̂y ¼ cy

�� ��
 �
:

ð46Þ
Therefore, the values of q̂x and q̂y which minimise lx,x and ly,y in (41), also satisfying (45), are
q̂x ¼ jcxj;
q̂y ¼ jcyj:

(
ð47Þ
In order to fully satisfy the monotonitcity requirements (42), by substituting (47) into (42) a further condition is
found:
jcxj þ jcyj 6 1: ð48Þ



Table 1
Coefficients for selected schemes.

UFORCE FORCE Lax–Friedrichs Godunov Lax–Wendroff

b�1,0 1
8� 1

2 b2
x þ 1

2 c2
x þ 1

2 cx
1
8þ 1

2 c2
x þ 1

2 cx
1
2 ð12þ cxÞ 1

2 ðcx þ jcxjÞ cxð12þ cxÞ
b1,0 1

8� 1
2 b2

x þ 1
2 c2

x � 1
2 cx

1
8þ 1

2 c2
x � 1

2 cx
1
2 ð12� cxÞ 1

2 ðjcxj � cxÞ �cxð12� cxÞ
b0,0 1

2þ b2
x þ b2

y � c2
x � c2

y
1
2� c2

x � c2
y 0 1 � jcxj � jcyj 1� 2c2

x � 2c2
y

b0,�1 1
8� 1

2 b2
y þ 1

2 c2
y þ 1

2 cy
1
8þ 1

2 c2
y þ 1

2 cy
1
2 ð12þ cyÞ 1

2 ðcy þ jcyjÞ cyð12þ cyÞ
b0,1 1

8� 1
2 b2

y þ 1
2 c2

y � 1
2 cy

1
8þ 1

2 c2
y � 1

2 cy
1
2 ð12� cyÞ 1

2 ðjcyj � cyÞ �cyð12� cyÞ
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Substitution of (47) into (39) gives the Godunov upwind coefficients (35), while (48) turns out to be the Godunov upwind
stability condition (36). h

This proof can be easily extended in an arbitrary number a of spatial dimensions.

3.2.2. The optimal upwind bias in UFORCE
All the numerical methods discussed in this paper, say UFORCE (flux is given in (22)), FORCE (flux is given in (7)), Lax–

Friedrichs (flux is given in (11)) Lax–Wendroff (flux is given in (9) and (10)) and Godunov upwind (flux is given in (33) and
(34)) methods belong to the class of five-point schemes (32). The coefficients of such methods to be inserted in (32) are given
in Table 1. For the purpose at hand we have assumed upwind bias bx and by constant inside each cell and indicated with
cx ¼ kxDt

Dx and cy ¼ kyDt
Dy the directional CFL numbers. It is worth noticing that all methods given in Table 1 are directionally split

since coefficients b�1,0 and b1,0 depend only on parameters involving quantities evaluated along the x direction (i.e. cx and/or
bx) while b0,�1 and b0,1 depend only on parameters evaluated using quantities evaluated along the y direction (cy and/or by).

We begin our analysis noting that the UFORCE method exactly reproduces different numerical methods provided suitable
values for the upwind bias bx and by are chosen. In fact, comparing the coefficients in Table 1 one can verify that setting
bx = by = 0, the classical FORCE method (7) is exactly reproduced. Moreover setting
bx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� c2

x

r
; by ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� c2

y

r
; ð49Þ
the Lax–Wendroff method (9) and (10) is reproduced, while setting:
b2
x � c2

x þ
1
4
¼ 0; b2

y � c2
y þ

1
4
¼ 0; ð50Þ
the Lax–Friedrichs scheme (11) is obtained.
Amongst all the possibilities available, the optimal choice for the upwind bias is the one that allows us to obtain the first-

order monotone scheme with the smallest truncation error. In Section 3.2.1 it is proved that assuming the five-point stencil
method (32) the first-order monotone scheme with the smallest truncation error is the Godunov upwind method whose
coefficients are given in Table 1. By forcing the coefficients of the UFORCE (see Table 1) method to be those of two-dimen-
sional Godunov method (Table 1), we obtain the following solutions for the upwind-bias:
bx ¼ �
1
2

1� 2jcxjð Þ; by ¼ �
1
2

1� 2jcyj

 �

; ð51Þ
which allows scheme (32) to exactly reproduce the Godunov upwind method in two dimensions.
The reader can also easily verify that upwind bias (51) represents also the limit for the monotonicity region of the pro-

posed UFORCE method, i.e.:
jbxj 6
1
2
ð1� 2jcxjÞ and jbyj 6

1
2
ð1� 2jcyjÞ: ð52Þ
Considering the optimal choice for the upwind bias (51), the Godunov upwind stability region (36) is found. The possible
choices for the upwind bias are summarised in Fig. 4. Here the relationship between the upwind bias and the directional
Courant number in both x and y directions is shown. The directionally split property of the analysed methods, allows one
to plot the same graphs in the (cx,bx) and (cy,by) plane, independently. Moreover, if we restrict the stability condition assum-
ing jcxj 6 1

2 and jcyj 6 1
2, the following considerations can be drawn:

– the FORCE scheme is reproduced for any cx(cy) assuming bx = 0(by = 0);
– the Godunov upwind method is represented by a quadrilateral with vertices cx ¼ � 1

2 ; bx ¼ 0

 �

; cx ¼ 0; bx ¼ � 1
2


 �
which is

inscribed in a circle (radius=1
2) representing the Lax–Wendroff method;

– no choice of bx (by) exists which can reproduce the Lax–Friedrichs method but jcxj ¼ 1
2 (jcyj ¼ 1

2);
– any choice of bx (by) lying within the quadrilateral of Godunov method leads to stable and monotone methods.



Fig. 4. UFORCE method applied to the linear advection Eq. (30): monotonicity and stability region for different choices of the directional bias in the (bx,cx)
and (by,cy) plane. Relationships between upwind-bias and directional Courant number which allow UFORCE to reproduce existing methods.
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The numerical viscosity of methods in Fig. 4 is given by
lxx ¼
1
4

Dx2

Dt
1� 4b2

x


 �
; lyy ¼

1
4

Dy2

Dt
1� 4b2

y

� �� �
: ð53Þ
The scheme possessing the maximum viscosity is the FORCE method (bx = 0), while increasing the bias to bx ¼ � 1
2 (by ¼ � 1

2),
the numerical viscosity decrease to 0, thus representing second-order methods. The monotone scheme possessing the small-
est numerical viscosity is the Godunov method. Exceeding the threshold imposed by the Godunov method, the numerical
viscosity decreases, but oscillatory methods are obtained. Eventually, if we set cx ¼ � 1

2 and bx = 0 all the methods given in
Table 1 coincide.

The analysis presented in this section can be easily extended in more than two dimensions. For a dimensions the rela-
tionship for the optimal choice of the upwind bias can be generalised as:
bx ¼ �
1
2

1� ajcxjð Þ; ð54Þ
where x denotes the current direction and cx is the directional Courant number. In the next section we give a procedure for
the non-linear case.

3.3. Optimal choice for the upwind bias: non-linear case

The theory developed in the previous section for the linear case has been extended empirically to non-linear systems.
For the purpose at hand we consider the two-dimensional non-linear inviscid shallow water equations. They have real

eigenvalues kð1Þx ¼ u� a; kð2Þx ¼ u; kð3Þx ¼ uþ a along the x direction, and kð1Þy ¼ v � a; kð2Þy ¼ v; kð3Þy ¼ v þ a along the y direc-
tion, respectively. Here u and v represent the particle velocity along x and y respectively, while a ¼

ffiffiffiffiffiffi
gh

p
is celerity, where g is

acceleration due to gravity and h water depth (see Section 5 for details).
First, for the linear case, we note the following: (i) any choice for the sign inside expression (51) gives rise to identical

results, while this is not true for the non-linear case, (ii) the local Courant number is precisely defined since there is only
one possible choice for the eigenvalue, while this is not the case for non-linear systems. The open questions for non-linear
systems is thus, finding the correct sign S and the most suitable estimation for the eigenvalue kS to use in Eq. (51).

After numerical investigations we found that the expression for the upwind bias in the x direction (analogous consider-
ations can be made for the y direction) can be written as:
ðbxÞi;j ¼ S
1
2
� kS

Dt
ðDxÞi;j

" #( )
; ð55Þ
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where
S ¼

signðui;jÞ if ðui;j – 0Þ;

sign kð3Þx

� �
i�1;j
þ kð1Þx

� �
iþ1;j

� �
if ðui;j ¼ 0Þ and kð3Þx

� �
i�1;j
þ kð1Þx

� �
iþ1;j

– 0;

0 if ðui;j ¼ 0Þ and kð3Þx

� �
i�1;j
þ kð1Þx

� �
iþ1;j
¼ 0

8>>>><
>>>>:

ð56Þ
and the sign function is 1 if its argument is positive and �1 if it is negative. This means that the sign S in front the expression
of the bias is chosen, in an upwind fashion, accordingly to the sign of the particle velocity inside the cell. If the velocity inside
the cell is 0, the choice for the sign is made using upwind information coming from the neighbouring cells: i.e. assuming the
sign accordingly to the summation between the maximum eigenvalue coming from the left and minimum eigenvalue com-
ing from the right, otherwise we choose S ¼ 0) ðbxÞi ¼ 0, reproducing the standard FORCE scheme.

kS is an estimate for the maximum local characteristic speed in absolute value. Our analyses on the two-dimensional Bur-
gers equation (having one eigenvalue k = u) and the two-dimensional inviscid shallow water equations show that kS can
computed as:
kS ¼ max
�a06a6a0

max
k

kðkÞx

� �
iþa;j

����
����

� �
: ð57Þ
Relationship (57) takes into account the absolute value of the velocity of the fastest wave, for any �a0 6 a 6 a0 where a0

takes values 0 or 1. If a0 = 1, kS is evaluated with the eigenvalues in cell (i,j) and its neighbours (i � 1,j) and (i + 1, j), while
if a0 = 0 kS is evaluated with the eigenvalues in cell (i, j) only. Our numerical experiments show that setting a0 = 0 gives rise
to sharper profiles, which are more likely to be affected by oscillations in presence of large spatial gradients, while the choice
a0 = 1 gives oscillation-free results, with increased numerical diffusion. The choice of a0 is done empirically, according to the
behaviour of the hyperbolic system considered. In our applications we found that for the inviscid Burgers equation the choice
a0 = 1 is required in order to avoid spurious oscillations, while for the shallow water equations oscillation-free solutions were
found by setting a0 = 0. So for the shallow water equations we recommend:
kS ¼ max
k¼1;2;3

kðkÞx

� �
i;j

����
����

� �
; ð58Þ
which comes from (57) having set a0 = 0. Finally, the generalisation of the optimal bias in the x direction of the UFORCE
method on an arbitrary number a of dimensions can be written in the following way:
ðbxÞi ¼ S
1
2

1� akS
Dt
ðDxÞi

� �	 

: ð59Þ
It is worth mentioning that the analysis conducted in this section can be straightforward extended to other systems of equa-
tions characterised by eigenvalues of the form u ± a as the Euler equations, while it is also extended to other hyperbolic sys-
tems characterised by a different expression for the eigenvalues if an estimation of the maximum eigenvalue and criteria for
the S function are provided.
4. Second order non-oscillatory extension

In this section we extend the first-order UFORCE method to second order in space and time using the MUSCL-Hancock
approach [18] for the two-dimensional case. We remark that strictly speaking the MUSCL technique applies to regularly
spaced grids. This method proceeds as follows:

(I) MUSCL reconstruction. The cell averages Q n
i;j are reconstructed independently in the x and y directions by selecting

respective slope vectors Di and Dj, where the bar indicates a limited slope (difference) so as to avoid spurious oscilla-
tions near large gradients of the solution.
Boundary extrapolated values are
Q�x
i;j ¼ Q n

i;j �
1
2

Di; Qþx
i;j ¼ Q n

i;j þ
1
2

Di;

Q�y
i;j ¼ Q n

i;j �
1
2

Dj; Qþy
i;j ¼ Q n

i;j þ
1
2

Dj:

ð60Þ
(II) Evolution of these states by time 1
2 Dt as follows:
�Q l
i;j ¼ Q l

i;j þ
Dt

2Dx
FðQ�x

i;j Þ � FðQþx
i;j Þ

h i
þ Dt

2Dy
GðQ�y

i;j Þ � GðQþy
i;j Þ

h i
ð61Þ

for l = �x, + x, � y, + y.



Table 2
Convergence rates study for the two-dimensional UFORCE scheme, (c0 = 0.1 m, q0 = 1 m, T = 10 s, L = 400 m).

N Variable Q

L1 OðL1Þ L1 OðL1Þ

80 5.103E�02 – 8.029E�02 –
160 1.393E�02 1.873 2.188E�02 1.876
320 3.060E�03 2.187 4.806E�03 2.187
640 7.229E�04 2.082 1.136E�03 2.081

1280 1.777E�04 2.024 2.792E�04 2.024
2560 4.426E�05 2.006 6.953E�05 2.006
5120 1.104E�05 2.003 1.734E�05 2.003
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(III) Computation of UFORCE flux. This is done by evaluation of intermediate states applying the UFORCE scheme (22)
with:
FuLW2
iþ1

2;j
¼ F Q uLW2

iþ1
2;j

� �
ð62Þ

and

Q uLW2
iþ1

2;j
¼ 1

2 1� ðbxÞiþ1;j þ ðbxÞi;j
h i ð1þ 2ðbxÞi;jÞ �Q�x

iþ1;j þ ð1� 2ðbxÞiþ1;jÞ �Qþx
i;j Þ �

2Dt
Dx

� �
½Fð �Q�x

iþ1;jÞ � Fð �Qþx
i;j Þ�

	 

: ð63Þ

The second flux term in (22) is evaluated as:

FuLF2
iþ1

2;j
¼ 1

2 1� ðbxÞiþ1;j þ ðbxÞi;j
h i ð1þ 2ðbxÞi;jÞFð �Q�x

iþ1;jÞ þ ð1� 2ðbxÞiþ1;jÞFð �Qþx
i;j Þ�

n

� Dx
2Dt

� �
ð1þ 2ðbxÞi;jÞð1� 2ðbxÞiþ1;jÞð �Q�x

iþ1;j � �Qþx
i;j Þ


: ð64Þ
In order to avoid oscillations near large gradients we limit the slope (difference) Di following the ENO approach [5],
namely:
Di ¼ minmax ðQ n
iþ1;j � Q n

i;jÞ; ðQ
n
i;j � Q n

i�1;jÞ
h i

; ð65Þ
where the minmax function
minmax½a; b� ¼
a if jaj 6 jbj;
b otherwise

	
ð66Þ
is applied componentwise to the left and right difference vectors ðQ n
iþ1;j � Q n

i;jÞ; ðQ
n
i;j � Q n

i�1;jÞ.

4.1. Numerical convergence study

Here we compute the order of accuracy of the scheme to verify that the expected theoretical order is achieved. We con-
sider the one-dimensional linear advection equation, but computing the solution in a fully two-dimensional setting. In order
to validate the order of accuracy an exact solution is constructed by prescribing a function for q(x,y, t), which satisfies exactly
(30). It reads
qðx; y; tÞ ¼ q0 �
c0

k
sinðkx�xtÞ; ð67Þ
where k ¼ 2p
L ; x ¼ 2p

T ; kx ¼ x
k , L and T being the wave length and the period of the sinusoidal oscillation, respectively.

We solve the equations using a MUSCL-Hancock extension of the UFORCE method without making use of slope limiters.
We use a domain of 800 � 100 m, imposing periodic boundary conditions. Table 2 shows the errors, quantified through the
standard norms L1, L1, and the relative convergence rates for variable q at time t = 10 s with q0 = 1 m, c0 = 0.1 m, T=10 s and
L=400 m. The expected orders of accuracy are achieved with each norm.

5. Applications to the two-dimensional shallow water equations

Here we apply the second order version of the UFORCE method proposed in this paper to established test problems for the
two-dimensional non linear inviscid shallow water equations augmented by an equation for a passive scalar.
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The system written in conservative form reads:
@tQ þ @xFðQ Þ þ @yGðQ Þ ¼ 0; ð68Þ
where the vector of conserved variables Q and the fluxes along the x and y direction F(Q), G(Q) in Eq. (68), can be written as:
Q ¼

h

hu

hv
hC

2
6664

3
7775; FðQÞ ¼

hu

hu2 þ 1
2 gh2

huv
huC

2
6664

3
7775; GðQÞ ¼

hv
huv

hv2 þ 1
2 gh2

hvC

2
6664

3
7775: ð69Þ
Here u(x,y, t) and v(x,y, t) are the x and y components of velocity, h(x,y, t) is water depth, C(x,y, t) is the passive scalar con-
centration and g = 9.81 ms�1 is the acceleration due to gravity. The Jacobians of fluxes F(Q), G(Q) admit three distinct real
eigenvalues in each direction, namely
kð1Þx

kð2Þx

kð3Þx

2
64

3
75 ¼

u� a

u

uþ a

2
64

3
75;

kð1Þy

kð2Þy

kð3Þy

2
664

3
775 ¼

v � a

v
v þ a

2
64

3
75; ð70Þ
where a ¼
ffiffiffiffiffiffi
gh

p
is celerity and kð2Þx and kð2Þy have multiplicity 2. The equation for transport of a passive scalar has been intro-

duced in order to analyse the performance of our method in presence of contact waves, which usually poses difficulties to all
centred methods.

Results have been obtained enforcing the following CFL condition:
Dt 6
CFL

max
max

k¼1;2;3
kðkÞx


 �
i;j

��� ���
Dx ;

max
k¼1;2;3

kðkÞy


 �
i;j

��� ���
Dy

0
@

1
A

ð71Þ
with 0 < CFL < 1
2, where maxk¼1;2;3jðkðkÞx Þi;jj ¼ jui;jj þ ai;j and maxk¼1;2;3jðkðkÞy Þi;jj ¼ jv i;jj þ ai;j are the maximum wave propagation

speeds in absolute value in the x and y directions. Four numerical methods have been used in addition to the UFORCE meth-
od: one centred method (the FORCE method) and three Godunov-type upwind methods. Among the latter category, we used
a Godunov method coupled with an exact Riemann solver (since now, referred as Godunov-exact), a Godunov method cou-
pled with the HLL Riemann solver (referred as Godunov-HLL) and a Godunov method based on the Rusanov flux (referred as
Rusanov). All the results presented here are second-order accurate obtained using the MUSCL-Hancock ENO reconstruction
described in Section 4.

Three test problems have been solved in order to assess the behaviour of the UFORCE method: namely the collapse of a
circular dam, the collapse of a transversal dam and the collapse of a circular dam solved on a variably-spaced grid.

5.1. Test 1: collapse of a circular dam

This test case consists of the instantaneous breaking of a cylindrical tank initially filled with 2.5 m deep water at rest.
When the column of water is released, the shock wave results in a dramatic increase of water depth in the lower depth re-
gion, propagating in the radial direction. The wave generated by the breaking of the tank propagates into still water with an
initial depth of 0.5 m.

We solve (68) and (69) together with initial conditions:8

hðx; y;0Þ ¼ 2:5 m if x2 þ y2

6 R2;

hðx; y;0Þ ¼ 0:5 m if x2 þ y2 > R2;

uðx; y;0Þ ¼ 0 8 x; y;

vðx; y;0Þ ¼ 0 8 x; y;

>>>><
>>>>:

ð72Þ
being R = 2.5 m the tank radius. We use a coarse mesh of 101 � 101 cells in the square computational domain
([� 20,20] � [� 20,20]) m with transmissive boundary conditions. Solution is computed at time t = 1.4 s.

We provide an accurate reference solution, which was obtained by turning the problem (68), (69), (72) into a one-dimen-
sional problem in the radial direction (see [16]):
@t
h

hur

� �
þ @r

hur

hu2
r þ 1

2 gh2

" #
¼ �1

r
hur

hu2
r

� �
; ð73Þ
where r is the radial coordinate and ur(r, t) the radial velocity. The initial conditions (72) in the radial coordinate system read:
hðr;0Þ ¼ 2:5 m if r 6 R;

hðr;0Þ ¼ 0:5 m if r > R;

uðr;0Þ ¼ 0 8 r:

8><
>: ð74Þ
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System (73) and (74) is solved numerically on a fine mesh of 1000 cells using the WAF method in conjunction with the
HLLC approximate Riemann solver [16]. The CFL number is set to 0.9 and the limiter used is SUPERBEE [12].

The reference solution exhibits an outer circular shock and a circular rarefaction following the shock. With this test we
aim to assess the ability of the UFORCE method of accurately reproducing shock and rarefaction waves. Shock waves are dis-
continuous waves associated with the genuinely non-linear fields kð1Þ;ð3Þx ¼ u� a; kð1Þ;ð3Þy ¼ v � a. These wave require correct
speed of propagation, sharp resolution of the transition zone and absence of spurious oscillations around the shock. Rarefac-
tion waves are smooth waves and numerical methods should be able to resolve these features accurately, especially their
heads and tails, which contain discontinuities in space derivatives.

Results for this test are displayed in Figs. 5–7. In Figs. 5 and 6 we show numerical results for the depth h(x,y, t). The solu-
tions obtained with five numerical methods (symbols) are presented in terms of slices along the x-axis (y = 0) and compared
with the reference radial solution (full line). The numerical results in Fig. 5 have been obtained setting the CFL to 0.1. At a low
value of the CFL number the solution obtained with the centred method (FORCE) significantly differs from the solution ob-
tained with genuinely upwind methods (Godunov-exact, Godunov-HLL and Rusanov), being excessively smoothed and
smeared both in the shock and in the rarefaction zones. Among the upwind methods, slight differences are found in the rar-
efaction zones, depending on the kind of Riemann solver used, while the left and right facing shocks are solved almost to the
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Fig. 5. Test 1: collapse of a circular dam. Numerical results for water depth h of FORCE, UFORCE, Rusanov, Godunov-HLL and Godunov-exact numerical
methods (symbols) are compared with the reference radial solution (full line) at time t = 1.4 s. The numerical solution profiles are sliced on the x-axis. The
mesh used is 101 � 101 cells and CFL is set to 0.1.
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Fig. 6. Test 1: collapse of a circular dam. Numerical results for water depth h of FORCE, UFORCE, Rusanov, Godunov-HLL and Godunov-exact numerical
methods (symbols) are compared with the reference radial solution (full line) at time t = 1.4 s. The numerical solution profiles are sliced on the x-axis. The
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same accuracy by all the three upwind methods. The UFORCE method turns out to improve significantly accuracy compared
to FORCE both in the shock and in the rarefaction zones, reaching the same degree of accuracy as the Rusanov method.

The numerical results shown in Fig. 6, which have been obtained setting CFL = 0.45, show that at a larger value of the CFL
number the behavioural differences among centred and upwind methods tend to vanish. In fact, the FORCE method recovers
accuracy, reaching almost the same resolution of the other methods. Still, some differences remain in the description of the
rarefaction region, where both the FORCE and UFORCE methods outperform the Rusanov method.

In Fig. 7 the results obtained using CFL = 0.1 and CFL = 0.45 are plotted in terms of slices along the diagonal x = y. Fig. 7
shows that loss of accuracy at low CFL numbers is significant for the FORCE (centred) method, while the UFORCE is less dis-
sipative, performing analogously to the Rusanov method.

Finally, in Fig. 8 it is shown that the proposed UFORCE method converges to the correct solution as the grid is refined.

5.2. Test 2: collapse of a transversal dam

This test consists of the collapse of a dam positioned along the diagonal direction x = y. Across the wall the water depth h
initially exhibits a discontinuity, being 1 m on the top-left side of the domain and 0.5 m on the other side. Also the
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concentration field C is discontinuous across the dam, while water is initially at rest all over the domain. The dam removal
causes the propagation of a rarefaction wave orthogonally to the dam in the top-left side and of a shock wave on the other
side, travelling faster than the water particles. An intermediate wave for the concentration discontinuity, passively trans-
ported at a speed equal to water velocity, is also produced.

We solve (68) and (69) with initial conditions
Fig. 9.
method
mesh u

Fig. 10
solution
hðx; y;0Þ ¼ 1 m
Cðx; y;0Þ ¼ 1

	
if x 6 y and

hðx; y;0Þ ¼ 0:5 m
Cðx; y;0Þ ¼ 0

	
if x > y

uðx; y;0Þ ¼ vðx; y;0Þ ¼ 0 8 x; y:

8><
>: ð75Þ
We use a coarse mesh of 101 � 101 cells in the square computational domain ([� 25,25] � [� 25,25]) with transmissive
boundary conditions. Solution is computed at time t = 5 s.

An exact solution for this problem can be computed by solving a one-dimensional dam-break problem in the transversal
direction (y = �x) using an exact Riemann solver. The exact solution contains a left rarefaction, a right-facing shock wave and
a contact discontinuity in the middle, across which the concentration C varies discontinuously (see [15] for an accurate
description). We focus our attention to the contact discontinuity and discuss the results in terms of concentration C. In gen-
eral, computation of contact waves, associated with the linearly degenerate fields (kð2Þx ¼ u; kð2Þy ¼ v) is very challenging. One
main difficulty is to preserve sharpness in the resolution of these waves in time evolution problems. Upwind methods are
distinctly better than centred methods on this task; however, the upwind schemes based on the HLL Riemann solver behave
like centred methods for linear fields [13].
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Test 2: collapse of a transversal dam. Numerical results for concentration C of FORCE, UFORCE, Rusanov, Godunov-HLL and Godunov-exact numerical
s (symbols) are compared with the exact solution (full line) at time t = 5 s. The numerical solution profiles are sliced on the diagonal x = �y. The
sed is 101 � 101 cells and CFL is set to 0.1.
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Results for this test are displayed in Figs. 9 and 10. The solution for variable C(x,y, t) is represented in terms of slices in the
transversal direction (y = �x). In Fig. 9 results computed at CFL = 0.1 are given. It is seen that the Godunov-exact method
gives rise to the sharpest resolution of this wave, describing the concentration discontinuity using 8 cells, while the FORCE
method excessively smears the solution, requiring 15 cells for the discontinuity description. The Rusanov and Godunov-HLL
methods give very similar results, requiring 12 cells for the description of the contact discontinuity. The UFORCE method
significantly outperforms the FORCE method giving results that are similar to those obtained using the Godunov methods
with approximate Riemann solvers.
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Fig. 11. Test 3: collapse of a circular dam on a variably space grid. Sketch of the grid.
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For CFL = 0.45 (Fig. 10) both centred methods (FORCE, UFORCE) and upwind methods based on approximate Riemann
Solvers (Godunov-HLL, Rusanov) give rise to comparable results, while Godunov-exact outperforms all the other methods
presented.
5.3. Test 3: collapse of a circular dam on a variably-spaced grid

As it was shown in the previous sections, an attractive feature of the UFORCE method rely on its ability to perform con-
sistently in the full range of stable CFL numbers. This fact has important consequences in practical applications when the
shallow water equations are solved over irregular domains where a wide range of CFL numbers from small to large is
generated.

In order to highlight this behaviour we solve again the problem defined by (68), (69) and (72). However, we use a different
mesh from that in (5.1). We use the square computational domain ([� 40,40] � [� 40,40]). Along the y direction we adopt a
regular grid spacing Dy = 0.398 m corresponding to 201 computational cells. Along the x direction we adopt an irregular grid
spacing, namely Dx = 0.99 for x < 0, Dx = 0.24 for x > 0 and Dx = 0.62 for the cell centred in x = 0, corresponding to 201 var-
iably-spaced computational cells. The grid for this test is displayed in Fig. 11.

We impose transmissive boundary conditions. Solution is computed at time t = 4.7 s using CFL = 0.45.
The solution to this problem is expected to exhibit an outer facing shock, a circular rarefaction following the shock and an

inner shock which has been formed by the overexpansion of the flow caused by the reflection of the interior rarefaction from
the centre of the dam (see [16] for an accurate description). The exact reproduction of the complicated wave pattern in the
shock reflection would be challenging itself even on a fine regularly spaced grid.

In our test case however due to irregular grid spacing we provide an additional difficulty to numerical methods. In fact,
being the test problem symmetrical along the x-axis (x = 0), the CFL condition is enforced where Dx reaches its minimum
value, that is, within the fine grid side of the domain. Being the time step Dt common to all the cells in the domain, in
the coarse mesh side low local values of the CFL number will be found, causing a poor performance of numerical methods
in terms of accuracy. So, the interaction between a highly variable x-spacing and the CFL condition results in much more
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accurate solution in the fine mesh part of the domain (x > 0) compared to the coarse mesh part (x < 0). In this test case, pre-
serving symmetry along the y-axis is the challenge.

Results to this test are displayed in Fig. 12 in terms of contourplots, while in Fig. 13a-b are given results in terms of slices
along the x-axis (y = 0). In Fig. 12a we show that the FORCE method does not preserve symmetry because of an excessive
smearing at low local CFL number in the coarse mesh side of the domain, while the Godunov-exact solution (Fig. 12c) gives
rise to optimal results preserving symmetry in all the directions. The UFORCE solution (Fig. 12b) shows a significant
improvement compared to the FORCE method, possessing the same degree of symmetry as the Godunov-HLL numerical
solution (Fig. 12d). Similar conclusions can be drawn analysing Fig. 13a-b. All methods turn out to solve to the same degree
of accuracy in the finer mesh region of the domain while significant differences can be found in the coarser mesh side. Re-
sults obtained with the centred FORCE method (Fig. 13a) are affected by a severe numerical diffusion on the coarse mesh side
of the domain if compared with the Godunov-exact method, which outperforms all the other methods. The centred UFORCE
method and the upwind Godunov-HLL method give rise to very close results through all the domain (see Fig. 13b), even
though the Godunov-HLL method, due to its genuinely upwind nature, has a slight advantage over the UFORCE method
in the solution of the shock reflection around x = 0, but turns out to be slightly less accurate in the description of the rarefac-
tions (see Fig. 13b).

6. Conclusions

An upwind-biased version of FORCE flux in multiple-space dimensions for solving hyperbolic equations in conservation-
law form on structured meshes has been presented. Monotonicity, linear stability and numerical viscosity of the schemes
have been analysed in two space dimensions. We have then extended the new UFORCE fluxes to second order of accuracy
in space and time in the framework of finite volume methods. Results of the second-order version of the proposed method on
structured meshes have been shown. For the shallow water equations the performance of the numerical scheme has been
assessed by solving some well-established test problems on structured meshes. The solution obtained have been compared
with the classical centred FORCE scheme and with the Godunov upwind method in conjunction with exact and approximate
Riemann solvers.

The main feature of the proposed scheme is simplicity; it only requires partial knowledge of the eigenstructure of the
system of equations, i.e. an estimate of the largest eigenvalue and it does not require the availability of a Riemann solver.
It improves the accuracy of the solution for small Courant numbers and intermediate waves associated with linearly degen-
erate fields (contact discontinuities, shear waves and material interfaces). It achieves comparable accuracy to that of upwind
methods used in conjunction with approximate Riemann solvers, though retaining the simplicity and efficiency of centred
methods. This is attractive for applications in geophysical flows in which contact discontinuities play an important role as
well as the dynamics evolve experiencing different ranges of CFL numbers.

Future developments of UFORCE concerns the extension to high order of accuracy in space and time and extension to
unstructured grids for both conservative and non-conservative systems.
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